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Analysis of Slotted, Dielectrically Loaded,
Ridged Waveguide

ALFRED T. VILLENEUVE, SENIOR MEMBER, IEEE

Abstract —This paper considers a symmetrical double-ridged waveguide
with an axial dielectric slab inserted into it. Series expansions are used to
describe the waveguide fields. The method of moments is employed to
provide a system of linear equations from which the propagation constant
and the coefficients of the series expansions are obtained. From these
quantities, the field distributions and power flow are determined and a
characteristic impedance based on a power~voltage definition is computed.
The calculated propagation constants are compared with measured values.

1. INTRODUCTION

HIS PAPER considers a symmetrical, double-ridged

waveguide with an axial dielectric slab inserted into it.
This slab is centered along the guide axis and it may have
any width from zero up to the width of the slot in which it
is located. Ridged waveguide is useful because, among
other things, it permits wave propagation with smaller
overall guide dimensions than would be required by rectan-
gular guide. By introducing the dielectric slab, the propaga-
tion constant and characteristic impedance of the wave-
guide can be modified. Knowledge of the propagation
constant and the characteristic impedance are necessary to
design matched waveguide devices.

Ridged waveguide has been considered by various inves-
tigators over the past 30 to 40 years [1]-[9]. Most of these
investigators use various approximate techniques that treat
the ridge as a shunt susceptance; they apply a transverse
resonance procedure to determine cutoff wavelengths.
Several investigators have used modal expansions of the
fields and mode-matching or integral equation techniques
to determine the guide properties [6], [8], [9]. Only two
authors appear to have considered the dielectric-slab loaded
ridged waveguide [7]-[9]. Young used the transverse reso-
nance technique to get an approximate solution for the
propagation constants. His analysis seems to neglect the
coupling of higher order TE and TM fields that is caused
by the presence of the slab. However, he shows good
agreement between calculated and measured values of the
dominant-mode propagation constants. Magerl used a
mode-matching technique to calculate propagation con-
stants of a ridged guide whose ridge section was completely
filled with dielectric. However, he incorrectly assumed, a
priori, that the modes were TE and his results are only
correct at cutoff [9].

All of the investigators but Mihran considered unslotted
ridged guides. Mihran considered a slotted ridged guide
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without dielectric loading and used a combination of ex-
perimental capacitance measurements and a transverse res-
onance procedure to determine the cutoff wavelength, and
subsequently, the characteristic impedance of the guide [2].

In this paper, the slotted, dielectrically loaded, ridged
waveguide has been treated with a full modal solution
which yields the propagation constant and characteristic
impedance of the guide. The calculated values of the
propagation constants are compared with measured values
and excellent agreement is shown.

II. ANALYSIS

The waveguide configuration considered in this study is
shown in Fig. 1. The modes of interest are the y-polarized
modes, particularly the dominant mode. This analysis,
however, applies to all even y-polarized modes. The guide
is symmetrical; each half is divided into four regions that
may each contain a different material. The central region
approximates the slot if b; is made large enough to keep
the positions of the top and bottom walls in the region
from affecting the solution. The configuration is quite
general; it allows for computations for a wide variety of
guide /dielectric geometries.

A. Field Configuration

In general, the modes in the slab-loaded, ridged wave-
guide are neither TE nor TM to the guide axis. However, in
each region they may be expressed as a superposition of
parallel plate modes that are TE and TM to the x direc-
tion. In the /th region, the fields may be expressed as
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Fig. 1. Slotted, dielectrically loaded, ridged waveguide cross section.
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where
k, the propagation constant,

€; permittivity of ith region,
p; permeability of ith region,
b, height of ith region,

E 1if n=0,

E 2if n>0.

Equations (1) and (2) are analogous to those of Harrington
[10] except that they are formulated in terms of fields that
are TE and TM to the x axis instead of to the z axis, and
the mode functions are functions of y and z, rather than of
x and y.

On using the expressions for ¢ and ¢, the & and
e{" we have the following forms:
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Similarly, #) and h{ are given by the following expres-
sions:
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If a set of vector-mode functions &9, A®, &), and 7Y
are defined by replacing k, with — k, in (3) and (4), the
following integral relationships are satisfied:

b;/2 ; b/2 Ly 5 5

.[ b//2 ey &) dy = f_ :/zhs'l)°h,(,f)d)’ =8y (52)

fb /2 8.3 gy = j'b,/z RO-RD dy =3, (5b)
b,/2 —b/2

fb /2 500, 5 dy=fb'/2 RO RO dy =0 (5¢)
b,/2 -b/2

where §,,, is the Kronecker delta (=1 if m=n; =0 if

m # n). In the lossless case, k, is purely real for propagat-
ing modes and, from the definitions of the tilded-mode
functions and from (3) and (4), it is evident that when no
loss is present, the tilded-mode functions are complex
conjugates of those in (3) and (4).

The I,(x)s and V,(x)s represent the modal currents
and voltages, respectively. They are appropriate solutions
of the one-dimensional wave equation

d2u®
S k2P =0 (6)
dx?
where
=i — (2] - k2. )
1
They also satisfy the following conditions:
. 1 av®
D= -~ Zln :
L. Jop; dx (8a)
. 1 dI¥
() I S
Va Jjwe; dx (8b)
The fields in each region can be expressed with the above
equations.

In the field expressions, the propagation constant K, is
the unknown quantity. To find this unknown, the analysis
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uses the method of moments at the boundaries to get a set
of homogeneous simultaneous linear equations for the Vs
and the I,s. The propagation constant is the value of k,
for which the determinant of the system vanishes. With this
value, the corresponding eigenvector of the determinant is
computed and the values of ¥, and I, in each region are
determined. With these quantities determined, the fields
and corresponding power flow are computed and the char-
acteristic impedance is calculated. The procedure is de-
scribed in the following sections.

B. Derivation of Equations

The expressions for the voltages and currents in the
various regions are considered first. In region 1, the voltage
distribution is taken to be symmetrical in x and the
expressions may be written as follows:

IA/n(l) = CAna) cos(kxlnx)

(9a)

R k A

IO =2 CDgin (k,,x 9b

n pr‘l n ( x1n ) ( )
k
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IO =CWOsin(k,x). (9d)

In region 2, the voltages and currents consist of waves
traveling or attenuating in both directions as follows:
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In region 3, the voltages and currents are standing waves
with a vanishing voltage at the wall (x = a/2). They are
represented by the following equations:

VO =C® sin(kx3,, [52’- - x]) (11a)
j(3) = Ilcxf}n_ C"(Dcos(k 3 [g - x:l) (11b)
T jeps " 2

Vo = —@C(” sin(k [E—x]) (11c)
n jW€3 n x3n 2

I®=cH® cos(kx3n [% - x]) (11d)

Finally, in region 4, the voltages and currents are waves
traveling or attenuating in both directions as follows:

V@ = ADerkaan(x=1/D 1 @ ikxan(x=d/2) (12a)
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C. Application of Boundary Conditions

The requirement of continuity of the components of E
and H parallel to the interface x;; between region i and
region j, results in the following pair of equations:

Y POx)e0+ X VO(x)ed

n=0,2,-- n=2,4, -
= T 06+ L HO(x,)e
n=02,--- n=2,4,---
(13a)
Y IPGpRP+ X 10(x,)h
n=0,2,--- n=2,4,---
= T PR+ T 10K,
n=0,2,--- n=24,---
(13b)

These equations may be reduced to a set of simultaneous
linear equations by multiplying (13a) successively by &
and by & where b, >b, and integrating the resultmg
expressions over . Because the tangential electric field on
the i side of the junction vanishes for |y|> b, /2, the
integral on that side may be extended to b,/2 w1th the
following result:
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[, e (15b)
b,/2
S = &D-e d 15¢
[ werd (15¢)
s = 17 &0-e0 . (15d)

b/2

The integrals on the j side extend only over b , /2 because
the j-mode functions to not extend beyond those limits.
After multiplying (13b) successively by £$) and Y and
integrating it over y from — b, /2 to +b; /2 the followmg
sets of equations result:

9= T 1059+ TP (6)

n=0,2, n=2,4,---
=3 1(¢)f(ﬂ) + Y IO gun (16b)
n=0,2,--- n=2,4,---



VILLENEUVE: ANALYSIS OF SLOTTED, LOADED, RIDGED WAVEGUIDE

where
ﬁg#’)z/l’fﬂ hD-hO dy (17a)
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—bj/2
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In view of the definitions of the e and & functioﬁs, it may
be shown that

D = g0 (18a)

) = i) (18b)
I = TP (180)
F =T (189)

where the tilde over the #’s indicates that the .#’s are
evaluated with k, replaced by — k,. In the lossless case,
the #’s are the complex conjugates of the #’s.

With (13)-(18) and (9)-(12), the systems can be trun-
cated and solved for eigenvalues and eigenvectors. In the
truncation, the number of modes used in each region must
be sufficient to achieve the accuracy desired. Different
numbers of terms will be required in each region of a
different height. According to Lee et al., the number of
modes in a given region should be proportional to the
height of that region relative to the smallest height [11].
Thus, the smallest number of modes would be required in
the region of least height.

If the number of regions is not too large, the order of the
system of equations to be solved may be reduced conve-
niently to the number of modes in the region of smallest
height. This reduction may be accomplished by direct
solution for the voltage and current coefficients of all other
regions in terms of the coefficients in the region of smallest
height. This procedure was carried out to obtain the system
determinant. The details are quite involved and the result-
ing expressions are very complicated and for that reason
are not included here.

D. Solution for the Propagation Constant

Let H denote the matrix of the coefficients. The propa-
gation constants are those values of k, that satisfy the
following equation:

det(H) =0. (19)

The required order of the determinant used in the calcula-
tions is determined by the accuracy required in the com-
puted results.

The number of real roots (for the lossless case) is de-
termined by the number of propagating modes at a given
frequency. In the calculations that were performed, only
the dominant mode was considered. The equations were
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programmed for the lossless case and the root was found
using essentially the same technique as Montgomery [6].

E. Determination of Fields

When the eigenvalue k, of the matrix H has been
determined, the corresponding eigenvector may be ob-
tained. The method used is the same as that used by
Montegomery and is not described here. Once the A?’s
and B®@’s are determined, the coefficients of the fields in
various other regions can be determined, With these coeffi-
cients, the field may be approximated at any point in the
guide cross section. These fields were used in the calcula-
tions of the power flow along the guide as discussed in the
following section.

F. Power Flow

The average power transmitted along the guide may be
computed by integrating the longitudinal component of the
Poynting vector over the guide cross section

1
P== E X H*)-u, dxdy. 20
szA ( ) ly (20)

On using (1) and (3) in (20), the following expression for
P, the power flow in the ith region, is obtained:

1 nmw X2 g
= | == D f)*
P I ()

n=2,4,--
X2 . .
+ jk, [ TO1O dx
X
n k. f x’zfzn(t)f/n(i)*dx
n=0,2,--- wnu’i X

1

1 (nw) ) Iy
- — |5 VOvOdy, (21
n=2,4,--- JWl; bi X " " ( )

The actual value of P; is obtained by using the numerical
values of the modal coefficients in (21) along with their
functional forms given in (9) through (12). The total power
flow P, is the sum of the power flow in each region.

G. Characteristic Impedance

In waveguide, the definition of characteristic impedance
is not unique. One method that has been used to define
characteristic impedance by a number of investigators [2],
[3], [6] is based on the power transmitted along the guide
and a “voltage,” defined as the line integral of the electric-
field strength along some path from the top to bottom
walls. If this path is taken along the path x =0, i.e., along
the center of the cross section, the following equation
results:

_ (02 T Okt
Vo= [ B0,y dy= by EPe .

(22)

The corresponding expression for characteristic impedance
then becomes

2 A 2
_I%l? _ bGP

Zo=72p, = 2P;

= 2
2P, (23)
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Fig. 2. Guide cross section for numerical analysis.
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III. NUMERICAL RESULTS

A. Computer Programs

The equations for the propagation constant and for the
characteristic impedance have been programmed for
numerical calculations. They have been checked against
available data for unloaded ridge guide calculations and
the results agree [6].

B. Results for Slotted, Dielectric- Loaded Ridged Guide

Calculations were performed for the propagation con-
stant and characteristic impedance of slotted, ridged wave-
guide with dielectric slabs of various widths along its axis.
A typical cross section is shown in Fig. 2. The propagation
constant and characteristicimpedance change as the height
of regions 1 and 4 increase from the value b,. Fig. 3
illustrates that, beyond a certain height, the values of these
quantities remain constant. Calculated values are given in
Table 1. All subsequent calculations on slotted guides were
done for b,=1.056 in because, beyond that value, the
propagation constant and characteristic impedance are un-
affected.

The effect of the slot in unloaded guide is shown in Fig.
4 and in Table II. It is evident that the presence of the slot
may represent a large perturbation on the characteristics of
the unslotted guide depending on the slot width. In Fig. 5,
calculated values of the guide wavelengths and Z, are
shown versus dielectric width. The calculated wavelengths
are compared with measured values. The agreement is
excellent; the differences are within experimental uncer-
tainty. Table I1I shows the calculated results.
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Fig. 3. Effect of slot depth on propagation constant and characteristic

impedance.

TABLE I

EFFECT OF SLOT HEIGHT ON GUIDE PARAMETERS

(SLOT FILLED WITH DIELECTRIC)

frequency = 5.95 GHz, slot width = 0.316 in

Slot Height
n

by,

0 256
0 300
0 350
0 450
0 650
0 850
1 056

€ T 1 000 €
kz‘ rad/1n Xg, n ZO‘ ohms kz'

2 07102
1 96998
189234

3 0339
31895
3 3203
3 4753
3 5711
3 5861
3 5884

3 69973
3 56320
3 45374
3 32932
3 25222
3 23914
3 23691

180793
1 75947
1 75207
1 75095
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Fig. 4. Effect of slot width on unloaded guide.

TABLEII
EFFECT ON SLOT WIDTH D ON EMPTY GUIDE PARAMETERS
frequency = 5.95 GHz

Slot Width, d, in K,

g 0
0.000 2.07102 3.0339 265.16
0.040 2.06604 3.0412 266.49
0.080 2.05119 3.0632 270.71
0.158 1.99378 3.1514 288.91
0.190 1.95912 3.2071 301.04
0.237 . 1.89571 3.3144 325.30
0.275 1.83259 3.4286 352.14
0.316 1.75095 - 3.5884 391.11
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O CALCULATED
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Fig. 5. Guide wavelength and characteristic impedance versus dielectric
‘ slab thickness.
TABLE III
EFFECT OF DIELECTRIC THICKNESS ON SLOTTED GUIDE
PARAMETERS

frequency = 5.95 GHz, slot width = 0.316 in, €, = 2.62

Dielectric

Thickness, t, in k_, rad/in xg, in ZO‘ ohms
0.000 1.75095 3.5884 o391
0.040 1.91741 3.2769 388.57
0.080 2.07878 3.0225 385.67
0.158 2.37081 . 2.6502 374.95
0.237 2.70190 2.3225 342.57

0.316 3.23691 1.9411 274.47

C. Field Distributions

Calculated field distributions for the guide of Fig. 2 are
shown in Figs. 6-10. Figs. 6, 9, and 10 show E,
—-nok/k,H,, and jnok/k,H, versus x for y =0 and for
y=0.127 in. Figs. 7 and 8 show all six field components
for the same range in x and y. The value y =0 corre-
sponds to the central horizontal cut while the y = 0.127 in
corresponds to a horizontal cut that passes just 0.001 in
below the upper ridge. The curves of the transverse field
components, E, and H, along the y =0 line, show some
slight irregularities as x passes directly beneath the sharp
corners of the ridge. This effect is attributed to the conver-
gence characteristics of their series representation, which
must also approximate the necessary singularity of these
fields as the sharp corners are approached, as illustrated in
the cuts along y =0.127. The actual fields along y=0

should pass smoothly from one region to the next.! This
irregularity does not occur for H, because it is not singular
at the ridge corners and the series representing it converges
nicely everywhere. '

Fig. 6(a) and (b) represents the case of the slotted guide
with no dielectric, while Figs. 7(a) and (b) and 8(a) and (b)
show the effect of inserting slabs of Rexolite 2200 (¢, =
2.62) into the slot. For all figures, in the plane y =0, the
field components E,, E,, and H, vanish, but, as illustrated

1The use of additional terms in the series should improve the represen-
tation across the transition, but without significant improvement in over-
all results, and at the expense of additional computational costs. For all
curves and Tables shown, the numbers of terms used in the computations

were, in regions 1 and 4, 82 terms; in region 2, 20 terms; and in region 3,

. 36 terms. Use of as few as one-fourth as many terms does not significantly

change the computed values of k, and Z; but does markedly reduce
computation time.
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Fig. 8. Fields in slotted, ridged guide—full slot loading.
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Fig. 10. Fields in unslotted, empty, ridged guide.

in Figs. 7(b) and 8(b), the presence of the ridges gives rise
to an x component of E and a y component of H away

from this plane. The presence of this dielectric, i.e., the

inhomogeneity of the guide material, gives rise to the small
z component of E. It is also evident that, when the
dielectric is present in the ridged guide, E, /H, and E, /H,
are not constant as they are in homogeneously filled guide.
Thus, for the slab-loaded ridged guide there is no single
wave impedance definable as in homogeneously filled
guide.?

IV. CONCLUSIONS

A modal expansion method was applied to the analysis
of the slotted, dielectrically loaded, ridged waveguide to
permit calculation of the propagation constant, the char-

2In the special case of the dielectric slab-loaded rectangular waveguide,
the TE,,; modes are TE to the z axis and there is a single wave impedance
over the entire cross section.

acteristic impedance, and the field distributions of that
configuration. These quantities are required in the design
of matched waveguide devices.

Excellent agreement between calculated and measured
propagation constants was obtained. The analysis is appli-
cable to a wide variety of geometries and dielectric load-
ings and should prove useful in future work with ridged
waveguide component design.
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Stability of Multifrequency
Negative-Resistance Oscillators
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Abstract —A general criterion is derived for the stability of a negative-
resistance oscillator with respect to small perturbations in the operating
point. The derivation applies when the oscillator output consists of an

arbitrary number of related frequency components, including possible -

nonharmonic components, Examples are given of the application of the
stability criterion to coaxial IMPATT oscillator circuits, with experimental
verification of the frequency and output power at theoretically determined
stable operating points.

I. INTRODUCTION
EGATIVE-RESISTANCE devices find widespread

application in microwave oscillators. As a conse- -

quence of the nonlinearity of the negative resistance and of
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the complicated frequency dependence of the impedance
characteristic of the passive microwave circuit to which the
device is connected, the resulting signal will generally con-
tain harmonic components of the fundamental oscillation
frequency. However, in the more general case, the frequency
components in the oscillation may not be harmonically
related due to parametric effects, and its up-converted
low-frequency oscillation.

This paper presents expressions which permit determina-
tion of the stability of the oscillation state for the case
where the device impedance is a function of both excitation

., and frequency, and an arbitrary number of frequency

components are present. Use of the stability criteria de-
rived here provides a more accurate determination of the
oscillation characteristics of IMPATT and transferred-elec-
tron-device circuits using a realistic circuit model of the
microwave mounting and impedance-transforming struc-
ture.

The oscillator stability studies derive from the funda-
mental work of Kurokawa [1], who developed a first-order
theory describing the behavior of a one-port negative resis-
tance embedded in a general passive multiple-resonant
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