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Analysis of Slotted, Dielectrically Loaded,
Ridged Waveguide

ALFRED T. VILLENEUVE, SENIOR MEMBER, IEEE

Aktract —This paper considers a symmetrical double-ridged waveguide

with an axiaf dielectric slab inserted into it. Series expansions are used to

deseribe the wavegaide fields. The method of moments is employed to

provide a system of linear equations from wbieh the propagation constant

and the coefficients of the series expansions are obtained. From these
quantities, the field distributions and power flow are determined and a
characteristic impedance based on a power-voltage definition is computed.
The calculated propagation constants are compared with measured vafues.

I. INTRODUCTION

T HIS PAPER considers a symmetrical, double-ridged

waveguide with an axial dielectric slab inserted into it.

This slab is centered along the guide axis and it may have

any width from zero up to the width of the slot in which it

is located. Ridged waveguide is useful because, among

other things, it permits wave propagation with smaller

overall guide dimensions than would be required by rectan-

gular guide. By introducing the dielectric slab, the propaga-

tion constant and characteristic impedance of the wave-

guide can be modified. Knowledge of the propagation

constant and the characteristic impedance are necessary to

design matched waveguide devices.

Ridged waveguide has been considered by various inves-

tigators over the past 30 to 40 years [1]–[9]. Most of these

investigators use various approximate techniques that treat

the ridge as a shunt susceptance; they apply a transverse

resonance procedure to determine cutoff wavelengths.

Several investigators have used modal expansions of the
fields and mode-matching or integral equation techniques

to determine the guide properties [6], [8], [9]. Only two

authors appear to have considered the dielectric-slab loaded

ridged waveguide [7]–[9]. Young used the transverse reso-

nance technique to get an approximate solution for the

propagation constants. His analysis seems to neglect the

coupling of higher order TE and TM fields that is caused

by the presence of the slab. However, he shows good

agreement between calculated and measured values of the

dominant-mode propagation constants. Magerl used a
mode-matching technique to calculate propagation con-

stants of a ridged guide whose ridge section was completely

filled with dielectric. However, he incorrectly assumed, a

priori, that the modes were TE and his results are only

correct at cutoff [9].

All of the investigators but Mihran considered unslotted

ridged guides. Mihran considered a slotted ridged guide

without dielectric loading and used a combination of ex-

perimental capacitance measurements and a transverse res-

onance procedure to determine the cutoff wavelength, and

subsequently, the characteristic impedance of the guide [2].

In this paper, the slotted, dielectrically loaded, ridged

waveguide has been treated with a full modal solution

which yields the propagation constant and characteristic

impedance of the guide. The calculated values of the

propagation constants are compared with measured values

and excellent agreement is shown.

II. ANALYSIS

The waveguide configuration considered in this study is

shown in Fig. 1. The modes of interest are the y-polarized

modes, particularly the dominant mode. This analysis,

however, applies to all even y-polarized modes. The guide

is symmetrical; each half is divided into four regions that

may each contain a different material. The central region

approximates the slot if bl is made large enough to keep

the positions of the top and bottom walls in the region

from affecting the solution. The configuration is quite

general; it allows for computations for a wide variety of

guide/dielectric geometries.

A. Field Configuration

In general, the modes in the slab-loaded, ridged wave-

guide are neither TE nor TM to the guide axis. However, in

each region they may be expressed as a superposition of

parallel plate modes that are TE and TM to the x direc-

tion. In the ith region, the fields maybe expressed as

n=o, z,... n= 2,4,...

In (la) and (lb), the symbols have the following meanings:
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Similarly, ~~) and h:) are given by the following expres-
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If a set of vector-mode functions t?f), kf), Z:), and h:)

I 1-d

are defined by replacing kz with – ~z in ‘(3) &d (4), the

following integral relationships are satisfied:
Fig. 1. Slotted, dielectricatly loaded, ridged waveguide cross section.
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where dn~ is the Kronecker delta ( = 1 if m = n; = O if

m # n). In the lossless case, kz is purely real for propagat-

ing modes and, from the definitions of the tilded-mode

functions and from (3) and (4), it is evident that when no

loss is present, the tilded-mode functions are complex

conjugates of those in (3) and (4).

The l~(x)’s and V.(x)’s represent the modal currents

and voltages, respectively. They are appropriate solutions

of the one-dimensional wave equation

where

k= the propagation constant,

Ci permittivity of ith region,

Pi permeability of Zth region,

bi height of ith region,

En lifn=O,

En 2ifn>0. where

Equations (1) and (2) are analogous to those of Barrington

[10] except that they are formulated in terms of fields that

are TE and TM to the x axis instead of to the z axis, and

the mode functions are functions of y and z, rather than of

X and y.

On using the expressions for ~~) and aj~), the t:) and
e:) we have the following forms:

I(7)

They also satisfy the following conditions:

(13a)

(8b)

‘$)=(bi[(;+k,l[”yjkzcos(&y,

-uz(~)sh(&y)]e-jkzz (3a)

The fields in each region can be expressed with the above

equations.

In the field expressions, the propagation constant k, is

the unknown quantity. To find this unknown, the analysis
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uses the method of moments at the boundaries to get a set

of homogeneous simultaneous linear equations for the V~s

and the Ins. The propagation constant is the value of kZ

for which the determinant of the system vanishes. With this

value, the corresponding eigenvector of the determinant is

computed and the values of V. and 1. in each region are

determined. With these quantities determined, the fields

and corresponding power flow are computed and the char-

acteristic impedance is calculated. The procedure is de-

scribed in the following sections.

B. Derivation of Equations

The expressions for the voltages and currents in the

various regions are considered first. In region 1, the voltage

distribution is taken to be symmetrical in x and the

expressions may be written as follows:

@ = @J COS (kX..x) (9a)

k
};1) . —‘1” @) sin ( kX1nx)

jupl
(9b)

k
pjl) . . —‘1” C:lJ COS ( kX1nx)

jahsl
(9C)

&)= cjl) sin (kXl.x). (9d)

In region 2, the voltages and currents consist of waves

traveling or attenuating in both directions as follows:

jW9 = #4e-JL2n(x-J/2) + @9ejL2.(x-S/V
n (lOa)

g2) = &[~(2)e-jk2~(x-d/2)_ j(2)ejk,,~(x-s/2)]
6J/1.2 n

n

(lOb)

v(Z) = A(z)e-A2n(X-~/z) + B(4e&.(X-~/4
n (1OC)

#[~t2)e-,kx,n(x-~;2) -B(2)ejkx,.,x-s/2,1:2) = ~
n

x2n

(lOd)

In region 3, the voltages and currents are standing waves

with a vanishing voltage at the wall (x = a/2). They are

represented by the following equations:

~(’)= e~’)sh(kx’fl[:-xl)
(ha)

f~:~i3)COS(k.3&X]) (llb)
f:3) . —

;;;c:3)sin(kx3n[; -x]) (llC)
p-;’) . . —

~~’)=c~’)cos(kx%-xl)
(lld)

Finally, in region 4, the voltages and currents are waves

traveling or attenuating in both directions as follows:

P(4) = AA(q)e-A,. (X- ~/4 + jj(A)e&.(X-d/2)
n (12a)

1:4) = &[ J(4)e-J~X4.(x-fj2) _~(4)ej~X4n(x-~/2)]
ap4 n n

(12b)

v(4) = ~(4)e-jk4Jx- ~/2) + B;4)e&,(x-d/2)
n (12C)

Ij4) = &[~(4)e-J~Xq.(X-~/2) _B(4)eJ~X,.(X-~/2)] .
kn n

x4n

(12d)

C. Application of Boundary Conditions

The requirement of continuity of the components of E

and H parallel to the interface Xij between region i and

region j, results in the following pair of equations:

~ ~(’)(xj,)t~) + ~ ~(’)(xj,)e~)
n=o,’2, . . . n= Z,4, . . .

= ~ ~(~)(x,j)f?j~) + ~ ~(l)(xI,)e\J)
n=o, z,... n= 2,4,...

(13a)

Z ljl)(Xij)h!)+ ~=2~ ,, ~r$z)(xi~)~;)
~=(), z,...

= X ~i$j)(xlj)~$j)+ ~=2~ ,, 17’?(xij)h$?.
~=(),’2, . . . ,,

(13b)

These equations may be reduced to a set of simultaneous

linear equations by multiplying (13a) successively by ~~)

- ‘i) where bi > b, and integrating the resultingand by em

expressions over y. Because the tangential electric field on

the i side of the junction vanishes for Iyl > bj/2, the

integral on that side may be extended to b, /2 with the

following result:

ti~’)(x1,) = ~ ~(~)~~~~) + ~ ~(~)x~:),
~=o,z,... ~= Z,4, . . .

fi=o, z,... (14a)

V#)(X~j) = ~ ~(~)y~~~) + ~ ~(~)~~;~),
n= 0,2,... n= 2,4,...

~= 2,4,... (14b)

where

$~;J) ~

/

bJ’2 ~(i). @$J) @ (15a)
–bl/2 m

(15b)

(15C)

#(:J) z
/

bJ/2 ~:). e:) dy. (15d)
– b,/2

The integrals on the j side extend only over b, /2 because

the j-mode functions to not extend beyond those limits.

After multiplying (13b) successively by h;) and k:) and

integrating it over y from – bj/2 to + bj/2, the following

sets of equations result:

~~() = ~ ~:1)~~~) + ~ ~~;)y~;) (~fja)
n=(), z,... ~= Z,4, . . .

~~~) = ~ ~~i)#~#) + ~ ~~t)~~:) (~~b)
~=(), z,... ~=z,4, . . .
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where

y-{) E
/

bJ/2 j(j).~~) @ (17a)
– bl/2 m

(17b)

(17C)

(17d)

In view of the definitions of the e and h functions, it may

be shown that

##0 = $Jg) (18a)

/-;) = ~:#) (18b)

f~f) = j#:) (18c)

#:/) = j;:) (18d)

where the tilde over the Y‘s indicates that the Y‘s are

evaluated with k= replaced by – k,. In the lossless case,

the ~‘s are the complex conjugates of the Y ‘s.

With (13)–(18) and (9)-(12), the systems can be trun-

cated and solved for eigenvalues and eigenvectors. In the

truncation, the number of modes used in each region must

be sufficient to achieve the accuracy desired. Different

numbers of terms will be required in each region of a

different height. According to Lee et al., the number of

modes in a given region should be proportional to the

height of that region relative to the smallest height [11].

Thus, the smallest number of modes would be required in

the region of least height.

If the number of regions is not too large, the order of the

system of equations to be solved may be reduced conve-

~ently to the number of modes in the region of smallest

height. This reduction may be accomplished by direct

solution for the voltage and current coefficients of all other

regions in terms of the coefficients in the region of smallest

height. This procedure was carried out to obtain the system

determinant. The details are quite involved and the result-

ing expressions are very complicated and for that reason

are not included here.

D. Solution for the Propagation Constant

Let H denote the matrix of the coefficients. The propa-

gation constants are those values of k, that satisfy the

following equation:

det(H) = O. (19)

The required order of the determinant used in the calcula-

tions is determined by the accuracy required in the com-

puted results.

The number of real roots (for the lossless case) is de-

termined by the number of propagating modes at a given

frequency. In the calculations that were performed, only

the dominant mode was considered, The equations were

programmed for the lossless case and the root was found

using essentially the same technique as Montgomery [6].

E. Determination of Fields

When the eigenvalue k, of the matrix H has been

determined, the corresponding eigenvector may be ob-

tained. The method used is the same as that used by

Montgomery and is not described here. Once the A(2)’s

and B(2)’s are determined, the coefficients of the fields in

various other regions can be determined, With these coeffi-

cients, the field may be approximated at any point in the

guide cross section. These fields were used in the calcula-

tions of the power flow along the guide as discussed in the

following section.

F. Power Flow

The average power transmitted along the guide may be

computed by integrating the longitudinal component of the

Poynting vector over the guide cross section

f’=;JJAm(ExH*).uzdxdy. (2,0)

On using (1) and (3) in (20), the following expression for

Pi, the power flow in the ith region, is obtained:

The actual value of Pi is obtained by using the numerical

values of the modal coefficients in (21) along with their

functional forms given in (9) through (12). The total power

flow P, is the sum of the power flow in each region.

G. Characteristic Impedance

In waveguide, the definition of characteristic impedance

is not unique. One method that has been used to define

characteristic impedance by a number of investigators [2],

[3], [6] is based on the power transmitted along the guide

and a” voltage,” defined as the line integral of the electric-

field strength along some path from the top to bottom

walls. If this path is taken along the path x = O, i.e., alcmg

the center of the cross section, the following equation

results:

The corresponding expression for characteristic impedance

then becomes

‘zO= l~012_ blle$y
2PT 2P= .

(23)
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Fig. 2. Guide cross section for numerical analysis.
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111. NUMBRICAL RBSULTS

A. Computer Programs

The equations for the propagation constant and for the

characteristic impedance have been programmed for

numerical calculations. They have been checked against

available data for unloaded ridge guide calculations and

the results agree [6].

B. Results for Slotted Dielectric-Loaded Ridged Guide

Calculations were performed for the propagation con-

stant and characteristic impedance of slotted, ridged wave-

guide with dielectric slabs of various widths along its axis.

A typical cross section is shown in Fig. 2. The propagation

constant and characteristicimpedance change as the height

of regions 1 and 4 increase from the value bz. Fig. 3
illustrates that, beyond a certain height, the values of these

quantities remain constant. Calculated values are given in

Table I. All subsequent calculations on slotted guides were

done for bl = 1.056 in because, beyond that value, the
propagation constant and characteristic impedance are un-

affected.

The effect of the slot in unloaded guide is shown in Fig.

4 and in Table II. It is evident that the presence of the slot

may represent a large perturbation on the characteristics of

the unslotted guide depending on the slot width. In Fig. 5,

calculated values of the guide wavelengths and 20 are

shown versus dielectric width, The calculated wavelengths

are compared with measured values. The agreement is

excellent; the differences are within experimental uncer-

tainty. Table III shows the calculated results.
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Fig. 3. Effect of slot depth on propagation constant and characteristic
impedance.

TABLE I
EFFECT OF SLOT HEIGHT ON GUIDE PARAMETERS

(SLOT FILLED WITH DIELECTRIC)
frequency = 5.95 GHz, slot width= 0.316 k

‘1,=1 000 =262‘1,

Slot Height

bl, ‘n kz, rad/in L ln Zo, ohms kz, rad/in A ]n Zo, ohms
9’ 9’

0 256
0 300
0 3s0
o 450
0 650
0 85o

2 07102
1 96998
1 89234
1 80793
1 75947
1 75207

0339
1895
3203
4753
5711
5861

265 16
300 77
330 40
365 32
3s7 05
390 56

3 69973
3 S6320
3 45374
3 32932
3 25222
3 23914

1 6983
1 7634
1 8192
1 8872
1 9320
1 9404

177 83
202 83
224.47
251.50
270 29
273 83

1 056 1 75095 3 5884 391.11 3 23691 1 9411 274 47
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Fig. 4. Effect ofslotwidth onunloaded guide.

TABLE II
EFFECTON SLOTWIDTH D ON EMPTY GUIDE PARAMETERS

frequency = 5.95 GHz

Slot Width, d, in k~, racilln k’
9’ ‘n 209

ohms

‘\
h

\\ \

\
\

‘q,
~

\x
m

\
f = 5.96 G!-lz \
c = 2.62
r

\x

SLOT WIDTH = 0.316 INCH
w

1 I I
0.0 0.100 0.200 0.300 0.400

DIELECTRIC THICKNESS
INCHES

Fig. 5. Guide wavelength and characteristic impedance versus dielectric
slab thickness.

TABLE III
EFFECTOFDIELECTRICTHICKNESSON SLOITED GUIDE

parameters
frequency = 5.95 GHz, slot width= 0.316 in, fir= 2.62

0.000
0.040

0. 0s0

0.15s

0.190

0.237

0.275

0.316

2.07102

2.06604

2,05119

1.9937s

1.95912

1.89571

1.S3259 .

1.75095

3.0339

3.0412

3,0632

3.1514

3.2071

3.3144

3.42S6

3. 5s84

265.16

266.49

270.71

288.91

301.04

325.30

352.14

391.11

—
Dielectric

Thickness, t, in k~, radlin
‘9’ ‘n 20, ohms

.—
0.000 1.75095 3.5884 391,11
0.040 1.91741 3.2769 388.57
0.080 2.07S7S 3.0225
0.15s

385,67
2 37081 2.6502 374.95

0.237 2.70190 2.3225 342.57
0.316 3.23691 1.9411 274,47

C. Field Distributions

Calculated field distributions for the guide of Fig. 2 are

shown in Figs. 6–10. Figs. 6, 9, and 10 show EY,

– TIO~/I’C,%, and .i~ok/L& versus x for Y = O and for
y = 0.127 in. Figs. 7 and 8 show all six field components

for the same range in x and y. The value y = O corre-

sponds to the central horizontal cut while the y = 0.127 in

corresponds to a horizontal cut that passes just 0.001 in

below the upper ridge. The curves of the transverse field

components, EY and HX along the y = O line, show some

slight irregularities as x passes directly beneath the sharp
corners of the ridge. This effect is attributed to the conver-

gence characteristics of their series representation, which

must also approximate the necessary singularity of these

fields as the sharp corners are approached, as illustrated in

the cuts along y = 0.127. The actual fields along y = O

should pass smoothly from one region to the next.l This

irregularity does not occur for HZ because it is not singular

at the ridge corners and the series representing it converges

nicely everywhere.

Fig. 6(a) and (b) represents the case of the slotted guide

with no dielectric, while Figs. 7(a) and (b) and 8(a) and (b)

show the effect of inserting slabs of Rexolite 2200 (e, =

2.62) into the slot. For all figures, in the plane y = O, the

field components E=, EX, and HY vanish, but, as illustrated

1me use of additi~naf terms ti the series should improve the rePr~~sen-

tation across the transition, but without significant improvement in over-
all results, and at the expense of additional computational costs. For all
curves and Tables shown, the numbers of terms used in the computations
were, in regions 1 and 4, 82 term$ in region 2, 20 terms; and in region 3,
36 terms. Use of as few as one-fourth as many terms does not significantly
change the computed values of k, and ZO but does markedly reduce
computation time.
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Fig. 6. Fields in unloaded, slotted ridged guide.

0.00 0.06 0.16 0.24 0.32 0.40 0.46

X – inch-

(a)

4.40

4.00

3.66

3.20

8
> 2.s0

0.00 0.00 0.16 0.24 0.32 0,40 o.~

X -- Inchw

(a).,
Fig. 7. Fields in slotted, ridged guide-partial slot loading.
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Fig. 8. Fields in slotted, ridged guide-full slot loading.
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Fig. 9. Fields in unslotted
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Fig. 10. Fields in unslotted, empty, ridged guide.

in Figs. 7(b) and 8(b), the presence of the ridges gives rise

to an x component of E and a y component of H away

from this plane. The presence of this dielectric, i.e., the.

inhomogeneity of the guide material, gives rise to the small

z component of E. It is also evident that, when the

dielectric is present in the ridged guide, EY/Hx and Ex/HY
are not constant as they are in homogeneously filled guide.

Thus, for the slab-loaded ridged guide there is no single

wave impedance definable as in homogeneously filled

guide.z

IV. CONCLUSIONS

A modal expansion method was applied to the analysis

of the slotted, dielectrically loaded, ridged waveguide to

permit calculation of the propagation constant, the char-

21n the speciaf case of the dielectric slab-loaded rectangular waveguide,
the TEUO modes are TE to the z axis and there is a single wave impedance
over the entire cross section.

acteristic impedance, and the field distributions of that

configuration. These quantities are required in the design

of matched waveguide devices.

Excellent agreement between calculated and measured

propagation constants was obtained. The analysis is appli-

cable to a wide variety of geometries and dielectric load-

ings and should prove useful in future work with ridged

waveguide component design.
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Stability of Multifrequency
Negative-Resistance Oscillators

BEVAN D. BATES, MEbJEER,IEEE, AND PETER J. KHAN, SEN1ORMBMBER, IEEE

Abstract—A general criterion is derived for the stabfity of a negative-
resistance oscillator with respect to srnaff perturbations in the operating

point. The derivation applies when the oscillator output consists of an

arbitrary number of related frequency components, including possible
nonbarmonic components. Examples are given of the application of the

stabitity criterion to coaxial IMPAIT oscillator circuits, with experimental
verification of the freqneney and output power at theoretically detemdnerf

stable operating points.

I. lNTRODUCTION

N EGATIVE-RESISTANCE devices find widespread

application in microwave oscillators. As a conse-
quence of the nonlinearity of the negative resistance and of
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the complicated frequency dependence of the impedance

characteristic of the passive microwave circuit to which the

device is comected, the resulting signal will generally con-

tain harmonic components of the fundamental oscillation

frequency. However, in the more general case, the frequency

components in- the oscillation may not be harmonically

related due to parametric effects, and its up-converted

low-frequency oscillation,

This paper presents expressions which permit determina-

tion of the stability of the oscillation state for the case

where the device impedance is a function ‘of both excitation

and frequency, and an arbitrary number of frequency

components are present. Use of the stability criteria de-

rived here provides a more accurate determination of the

oscillation characteristics of IMPATT and transferred-elec-

tron-device circuits using a realistic circuit model of the

microwave mounting and impedance-transforming struc-

ture.

The oscillator stability studies derive from the funda-

mental work of Kurokawa [1], who developed a first-order

theory describing the behavior of a one-port negative resis-

tance embedded in a general passive multiple-resonant
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